ABSTRACT
Hereditary hemochromatosis is a genetic disorder of iron overload. Over the past 15
years, significant advances have been made in understanding the molecular pathogenesis
of this disorder. First, genetic studies linked this disorder to mutations in several
genes, including HFE , transferrin receptor 2 (TFR2 ), hepcidin (HAMP ), ferroportin (SLC40A1 ), and hemojuvelin (HFE2 ). Recent progress has generated significant insight into the function of these molecules
in systemic iron homeostasis, and has revealed that despite the genetic and phenotypic
diversity of hereditary hemochromatosis, there are common pathogenic mechanisms underlying
this disease. The common downstream mechanism of iron overload in hereditary hemochromatosis
is abnormal regulation of the hepcidin–ferroportin axis, leading to a failure to prevent
excess iron from entering the circulation. Recent data are starting to unravel the
molecular mechanisms by which iron regulates hepcidin production, and has demonstrated
a key role for the bone morphogenetic protein–hemojuvelin–SMAD signaling pathway in
this process. Future studies will be needed to more fully understand the molecular
mechanisms of iron sensing and the roles of HFE and TFR2 in this process. Here, the authors review the current state of knowledge on the molecular
pathogenesis of hereditary hemochromatosis.
KEYWORDS
Hemochromatosis - iron - hepcidin - bone morphogenetic protein - hemojuvelin -
HFE
- transferrin receptor 2 - ferroportin
REFERENCES
1
Smith P M, Godfrey B E, Williams R.
Iron absorption in idiopathic haemochromatosis and its measurement using a whole-body
counter.
Clin Sci.
1969;
37
(2)
519-531
2
Lynch S R, Skikne B S, Cook J D.
Food iron absorption in idiopathic hemochromatosis.
Blood.
1989;
74
(6)
2187-2193
3
Fillet G, Beguin Y, Baldelli L.
Model of reticuloendothelial iron metabolism in humans: abnormal behavior in idiopathic
hemochromatosis and in inflammation.
Blood.
1989;
74
(2)
844-851
4 Trousseau A. Glycosurie: diabete sucre. In: Clinique Med de l'Hotel de Paris. Paris:
J.B. Bailliere; 1865. 2: 663-698
5
von Recklinghausen F D.
Uber haemochromatose. Tagll Versamml Natur Artze Heidelberg.
1889;
324-325
6 Sheldon J. Haemochromatosis. London: Oxford University Press; 1935
7
Feder J N, Gnirke A, Thomas W et al..
A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis.
Nat Genet.
1996;
13
(4)
399-408
8
Kawabata H, Yang R, Hirama T et al..
Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like
family.
J Biol Chem.
1999;
274
(30)
20826-20832
9
Camaschella C, Roetto A, Calì A et al..
The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22.
Nat Genet.
2000;
25
(1)
14-15
10
Pietrangelo A, Montosi G, Totaro A et al..
Hereditary hemochromatosis in adults without pathogenic mutations in the hemochromatosis
gene.
N Engl J Med.
1999;
341
(10)
725-732
11
Donovan A, Brownlie A, Zhou Y et al..
Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron
exporter.
Nature.
2000;
403
(6771)
776-781
12
McKie A T, Marciani P, Rolfs A et al..
A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral
transfer of iron to the circulation.
Mol Cell.
2000;
5
(2)
299-309
13
Njajou O T, Vaessen N, Joosse M et al..
A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis.
Nat Genet.
2001;
28
(3)
213-214
14
Montosi G, Donovan A, Totaro A et al..
Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin
(SLC11A3) gene.
J Clin Invest.
2001;
108
(4)
619-623
15
Roetto A, Papanikolaou G, Politou M et al..
Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis.
Nat Genet.
2003;
33
(1)
21-22
16
Papanikolaou G, Samuels M E, Ludwig E H et al..
Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis.
Nat Genet.
2004;
36
(1)
77-82
17
Krause A, Neitz S, Mägert H J et al..
LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity.
FEBS Lett.
2000;
480
(2-3)
147-150
18
Park C H, Valore E V, Waring A J, Ganz T.
Hepcidin, a urinary antimicrobial peptide synthesized in the liver.
J Biol Chem.
2001;
276
(11)
7806-7810
19
Pigeon C, Ilyin G, Courselaud B et al..
A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial
peptide hepcidin, is overexpressed during iron overload.
J Biol Chem.
2001;
276
(11)
7811-7819
20
Nicolas G, Bennoun M, Devaux I et al..
Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory
factor 2 (USF2) knockout mice.
Proc Natl Acad Sci U S A.
2001;
98
(15)
8780-8785
21
Nicolas G, Bennoun M, Porteu A et al..
Severe iron deficiency anemia in transgenic mice expressing liver hepcidin.
Proc Natl Acad Sci U S A.
2002;
99
(7)
4596-4601
22
Pietrangelo A.
Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment.
Gastroenterology.
2010;
139
(2)
393-408
408
e1-e2
23
Nemeth E, Tuttle M S, Powelson J et al..
Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its
internalization.
Science.
2004;
306
(5704)
2090-2093
24
Sham R L, Phatak P D, Nemeth E, Ganz T.
Hereditary hemochromatosis due to resistance to hepcidin: high hepcidin concentrations
in a family with C326S ferroportin mutation.
Blood.
2009;
114
(2)
493-494
25
Fernandes A, Preza G C, Phung Y et al..
The molecular basis of hepcidin-resistant hereditary hemochromatosis.
Blood.
2009;
114
(2)
437-443
26
Hentze M W, Muckenthaler M U, Andrews N C.
Balancing acts: molecular control of mammalian iron metabolism.
Cell.
2004;
117
(3)
285-297
27
Ganz T.
Hepcidin and iron regulation, 10 years later.
Blood.
2011;
117
(17)
4425-4433
28
Nicolas G, Chauvet C, Viatte L et al..
The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia,
and inflammation.
J Clin Invest.
2002;
110
(7)
1037-1044
29
Nemeth E, Rivera S, Gabayan V et al..
IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory
hormone hepcidin.
J Clin Invest.
2004;
113
(9)
1271-1276
30
Ashby D R, Gale D P, Busbridge M et al..
Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal
disease.
Kidney Int.
2009;
75
(9)
976-981
31
Theurl I, Aigner E, Theurl M et al..
Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia:
diagnostic and therapeutic implications.
Blood.
2009;
113
(21)
5277-5286
32
Lee P, Peng H, Gelbart T, Wang L, Beutler E.
Regulation of hepcidin transcription by interleukin-1 and interleukin-6.
Proc Natl Acad Sci U S A.
2005;
102
(6)
1906-1910
33
Sow F B, Florence W C, Satoskar A R, Schlesinger L S, Zwilling B S, Lafuse W P.
Expression and localization of hepcidin in macrophages: a role in host defense against
tuberculosis.
J Leukoc Biol.
2007;
82
(4)
934-945
34
Anderson G J, Frazer D M, Wilkins S J et al..
Relationship between intestinal iron-transporter expression, hepatic hepcidin levels
and the control of iron absorption.
Biochem Soc Trans.
2002;
30
(4)
724-726
35
Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D.
Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans
injected with LPS.
Blood.
2005;
106
(5)
1864-1866
36
Zhang K, Shen X, Wu J et al..
Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory
response.
Cell.
2006;
124
(3)
587-599
37
Vecchi C, Montosi G, Zhang K et al..
ER stress controls iron metabolism through induction of hepcidin.
Science.
2009;
325
(5942)
877-880
38
Oliveira S J, Pinto J P, Picarote G et al..
ER stress-inducible factor CHOP affects the expression of hepcidin by modulating C/EBPalpha
activity.
PLoS ONE.
2009;
4
(8)
e6618
39
Pak M, Lopez M A, Gabayan V, Ganz T, Rivera S.
Suppression of hepcidin during anemia requires erythropoietic activity.
Blood.
2006;
108
(12)
3730-3735
40
Vokurka M, Krijt J, Sulc K, Necas E.
Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis.
Physiol Res.
2006;
55
(6)
667-674
41
Peyssonnaux C, Zinkernagel A S, Schuepbach R A et al..
Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs).
J Clin Invest.
2007;
117
(7)
1926-1932
42
Peyssonnaux C, Nizet V, Johnson R S.
Role of the hypoxia inducible factors HIF in iron metabolism.
Cell Cycle.
2008;
7
(1)
28-32
43
Tanno T, Bhanu N V, Oneal P A et al..
High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein
hepcidin.
Nat Med.
2007;
13
(9)
1096-1101
44
Tanno T, Porayette P, Sripichai O et al..
Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression
in murine and human cells.
Blood.
2009;
114
(1)
181-186
45
Lee P L, Beutler E, Rao S V, Barton J C.
Genetic abnormalities and juvenile hemochromatosis: mutations of the HJV gene encoding
hemojuvelin.
Blood.
2004;
103
(12)
4669-4671
46
Huang F W, Pinkus J L, Pinkus G S, Fleming M D, Andrews N C.
A mouse model of juvenile hemochromatosis.
J Clin Invest.
2005;
115
(8)
2187-2191
47
Niederkofler V, Salie R, Arber S.
Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe
iron overload.
J Clin Invest.
2005;
115
(8)
2180-2186
48
Samad T A, Srinivasan A, Karchewski L A et al..
DRAGON: a member of the repulsive guidance molecule-related family of neuronal- and
muscle-expressed membrane proteins is regulated by DRG11 and has neuronal adhesive
properties.
J Neurosci.
2004;
24
(8)
2027-2036
49
Niederkofler V, Salie R, Sigrist M, Arber S.
Repulsive guidance molecule (RGM) gene function is required for neural tube closure
but not retinal topography in the mouse visual system.
J Neurosci.
2004;
24
(4)
808-818
50
Monnier P P, Sierra A, Macchi P et al..
RGM is a repulsive guidance molecule for retinal axons.
Nature.
2002;
419
(6905)
392-395
51
Samad T A, Rebbapragada A, Bell E et al..
DRAGON, a bone morphogenetic protein co-receptor.
J Biol Chem.
2005;
280
(14)
14122-14129
52
Babitt J L, Zhang Y, Samad T A et al..
Repulsive guidance molecule (RGMa), a DRAGON homologue, is a bone morphogenetic protein
co-receptor.
J Biol Chem.
2005;
280
(33)
29820-29827
53
Corradini E, Babitt J L, Lin H Y.
The RGM/DRAGON family of BMP co-receptors.
Cytokine Growth Factor Rev.
2009;
20
(5-6)
389-398
54
Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K.
Two major Smad pathways in TGF-beta superfamily signalling.
Genes Cells.
2002;
7
(12)
1191-1204
55
Mleczko-Sanecka K, Casanovas G, Ragab A et al..
SMAD7 controls iron metabolism as a potent inhibitor of hepcidin expression.
Blood.
2010;
115
(13)
2657-2665
56
Xia Y, Cortez-Retamozo V, Niederkofler V et al..
Dragon (repulsive guidance molecule b) inhibits IL-6 expression in macrophages.
J Immunol.
2011;
186
(3)
1369-1376
57
Babitt J L, Huang F W, Wrighting D M et al..
Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression.
Nat Genet.
2006;
38
(5)
531-539
58
Wang R H, Li C, Xu X et al..
A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression.
Cell Metab.
2005;
2
(6)
399-409
59
Truksa J, Peng H, Lee P, Beutler E.
Different regulatory elements are required for response of hepcidin to interleukin-6
and bone morphogenetic proteins 4 and 9.
Br J Haematol.
2007;
139
(1)
138-147
60
Verga Falzacappa M V, Casanovas G, Hentze M W, Muckenthaler M U.
A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls
HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells.
J Mol Med.
2008;
86
(5)
531-540
61
Truksa J, Lee P, Beutler E.
Two BMP responsive elements, STAT, and bZIP/HNF4/COUP motifs of the hepcidin promoter
are critical for BMP, SMAD1, and HJV responsiveness.
Blood.
2009;
113
(3)
688-695
62
Babitt J L, Huang F W, Xia Y, Sidis Y, Andrews N C, Lin H Y.
Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron
balance.
J Clin Invest.
2007;
117
(7)
1933-1939
63
Andriopoulos Jr B, Corradini E, Xia Y et al..
BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism.
Nat Genet.
2009;
41
(4)
482-487
64
Yu P B, Hong C C, Sachidanandan C et al..
Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism.
Nat Chem Biol.
2008;
4
(1)
33-41
65
Truksa J, Peng H, Lee P, Beutler E.
Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently
of HFE, transferrin receptor 2 (TFR2), and IL-6.
Proc Natl Acad Sci U S A.
2006;
103
(27)
10289-10293
66
Xia Y, Babitt J L, Sidis Y, Chung R T, Lin H Y.
Hemojuvelin regulates hepcidin expression via a selective subset of BMP ligands and
receptors independently of neogenin.
Blood.
2008;
111
(10)
5195-5204
67
Kautz L, Meynard D, Monnier A et al..
Iron regulates phosphorylation of Smad1/5/8 and gene expression of BMP6, SMAD7, ID1,
and ATOH8 in the mouse liver.
Blood.
2008;
112
(4)
1503-1509
68
Meynard D, Kautz L, Darnaud V, Canonne-Hergaux F, Coppin H, Roth M P.
Lack of the bone morphogenetic protein BMP6 induces massive iron overload.
Nat Genet.
2009;
41
(4)
478-481
69
Arndt S, Maegdefrau U, Dorn C, Schardt K, Hellerbrand C, Bosserhoff A K.
Iron-induced expression of bone morphogenic protein 6 in intestinal cells is the main
regulator of hepatic hepcidin expression in vivo.
Gastroenterology.
2010;
138
(1)
372-382
70
Kautz L, Besson-Fournier C, Meynard D, Latour C, Roth M P, Coppin H.
Iron overload induces BMP6 expression in the liver but not in the duodenum.
Haematologica.
2011;
96
(2)
199-203
71
Zhang A S, Gao J, Koeberl D D, Enns C A.
The role of hepatocyte hemojuvelin in the regulation of bone morphogenic protein-6
and hepcidin expression in vivo.
J Biol Chem.
2010;
285
(22)
16416-16423
72
Corradini E, Meynard D, Wu Q et al..
Serum and liver iron differently regulate the bone morphogenetic protein 6 (BMP6)-SMAD
signaling pathway in mice.
Hepatology.
2011;
54
(1)
273-284
73
Wrighting D M, Andrews N C.
Interleukin-6 induces hepcidin expression through STAT3.
Blood.
2006;
108
(9)
3204-3209
74
Verga Falzacappa M V, Vujic Spasic M, Kessler R, Stolte J, Hentze M W, Muckenthaler M U.
STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation.
Blood.
2007;
109
(1)
353-358
75
Pietrangelo A, Dierssen U, Valli L et al..
STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo.
Gastroenterology.
2007;
132
(1)
294-300
76
Steinbicker A U, Sachidanandan C, Vonner A J et al..
Inhibition of bone morphogenetic protein signaling attenuates anemia associated with
inflammation.
Blood.
2011;
117
(18)
4915-4923
76a
Theurl I, Schroll A, Sonnweber T et al..
Pharmacologic inhibition of hepcidin expression reverses anemia of chronic disease
in rats.
Blood.
2011;
July 5 (Epub ahead of print)
77
Feder J N, Tsuchihashi Z, Irrinki A et al..
The hemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction
and cell surface expression.
J Biol Chem.
1997;
272
(22)
14025-14028
78
Waheed A, Parkkila S, Zhou X Y et al..
Hereditary hemochromatosis: effects of C282Y and H63D mutations on association with
beta2-microglobulin, intracellular processing, and cell surface expression of the
HFE protein in COS-7 cells.
Proc Natl Acad Sci U S A.
1997;
94
(23)
12384-12389
79
Castoldi M, Spasic M V, Altamura S et al..
The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice.
J Clin Invest.
2011;
121
(4)
1386-1396
80
Parkkila S, Waheed A, Britton R S et al..
Association of the transferrin receptor in human placenta with HFE, the protein defective
in hereditary hemochromatosis.
Proc Natl Acad Sci U S A.
1997;
94
(24)
13198-13202
81
Feder J N, Penny D M, Irrinki A et al..
The hemochromatosis gene product complexes with the transferrin receptor and lowers
its affinity for ligand binding.
Proc Natl Acad Sci U S A.
1998;
95
(4)
1472-1477
82
Waheed A, Parkkila S, Saarnio J et al..
Association of HFE protein with transferrin receptor in crypt enterocytes of human
duodenum.
Proc Natl Acad Sci U S A.
1999;
96
(4)
1579-1584
83
Lebrón J A, West Jr A P, Bjorkman P J.
The hemochromatosis protein HFE competes with transferrin for binding to the transferrin
receptor.
J Mol Biol.
1999;
294
(1)
239-245
84
Bennett M J, Lebrón J A, Bjorkman P J.
Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin
receptor.
Nature.
2000;
403
(6765)
46-53
85
West Jr A P, Giannetti A M, Herr A B et al..
Mutational analysis of the transferrin receptor reveals overlapping HFE and transferrin
binding sites.
J Mol Biol.
2001;
313
(2)
385-397
86
Giannetti A M, Björkman P J.
HFE and transferrin directly compete for transferrin receptor in solution and at the
cell surface.
J Biol Chem.
2004;
279
(24)
25866-25875
87
Goswami T, Andrews N C.
Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests
a molecular mechanism for mammalian iron sensing.
J Biol Chem.
2006;
281
(39)
28494-28498
88
Chen J, Chloupková M, Gao J, Chapman-Arvedson T L, Enns C A.
HFE modulates transferrin receptor 2 levels in hepatoma cells via interactions that
differ from transferrin receptor 1-HFE interactions.
J Biol Chem.
2007;
282
(51)
36862-36870
89
Levy J E, Montross L K, Cohen D E, Fleming M D, Andrews N C.
The C282Y mutation causing hereditary hemochromatosis does not produce a null allele.
Blood.
1999;
94
(1)
9-11
90
Vujić Spasić M, Kiss J, Herrmann T et al..
HFE acts in hepatocytes to prevent hemochromatosis.
Cell Metab.
2008;
7
(2)
173-178
91
Ahmad K A, Ahmann J R, Migas M C et al..
Decreased liver hepcidin expression in the Hfe knockout mouse.
Blood Cells Mol Dis.
2002;
29
(3)
361-366
92
Nicolas G, Viatte L, Lou D Q et al..
Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis.
Nat Genet.
2003;
34
(1)
97-101
93
Muckenthaler M, Roy C N, Custodio A O et al..
Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression
in mouse hemochromatosis.
Nat Genet.
2003;
34
(1)
102-107
94
Bridle K R, Frazer D M, Wilkins S J et al..
Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as
a regulator of body iron homoeostasis.
Lancet.
2003;
361
(9358)
669-673
95
Piperno A, Girelli D, Nemeth E et al..
Blunted hepcidin response to oral iron challenge in HFE-related hemochromatosis.
Blood.
2007;
110
(12)
4096-4100
96
Tjalsma H, Laarakkers C M, van Swelm R P et al..
Mass spectrometry analysis of hepcidin peptides in experimental mouse models.
PLoS ONE.
2011;
6
(3)
e16762
97
Schmidt P J, Toran P T, Giannetti A M, Bjorkman P J, Andrews N C.
The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression.
Cell Metab.
2008;
7
(3)
205-214
98
Gao J, Chen J, Kramer M, Tsukamoto H, Zhang A S, Enns C A.
Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor
2 is required for transferrin-induced hepcidin expression.
Cell Metab.
2009;
9
(3)
217-227
99
Schmidt P J, Andrews N C, Fleming M D.
Hepcidin induction by transgenic overexpression of HFE does not require the Hfe cytoplasmic
tail, but does require hemojuvelin.
Blood.
2010;
116
(25)
5679-5687
100
Corradini E, Garuti C, Montosi G et al..
Bone morphogenetic protein signaling is impaired in an HFE knockout mouse model of
hemochromatosis.
Gastroenterology.
2009;
137
(4)
1489-1497
101
Kautz L, Meynard D, Besson-Fournier C et al..
BMP/SMAD signaling is not enhanced in HFE-deficient mice despite increased Bmp6 expression.
Blood.
2009;
114
(12)
2515-2520
102
Bolondi G, Garuti C, Corradini E et al..
Altered hepatic BMP signaling pathway in human HFE hemochromatosis.
Blood Cells Mol Dis.
2010;
45
(4)
308-312
103
Ryan J D, Ryan E, Fabre A, Lawless M W, Crowe J.
Defective bone morphogenic protein signaling underlies hepcidin deficiency in HFE
hereditary hemochromatosis.
Hepatology.
2010;
52
(4)
1266-1273
104
Corradini E, Schmidt P J, Meynard D et al..
BMP6 treatment compensates for the molecular defect and ameliorates hemochromatosis
in HFE knockout mice.
Gastroenterology.
2010;
139
(5)
1721-1729
105
Finberg K E, Whittlesey R L, Andrews N C.
TMPRSS6 is a genetic modifier of the HFE-hemochromatosis phenotype in mice.
Blood.
2011;
117
(17)
4590-4599
106
Velasco G, Cal S, Quesada V, Sánchez L M, López-Otín C.
Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in
human liver and showing degrading activity against extracellular matrix proteins.
J Biol Chem.
2002;
277
(40)
37637-37646
107
Park T J, Lee Y J, Kim H J, Park H G, Park W J.
Cloning and characterization of TMPRSS6, a novel type 2 transmembrane serine protease.
Mol Cells.
2005;
19
(2)
223-227
108
Tanaka T, Roy C N, Yao W et al..
A genome-wide association analysis of serum iron concentrations.
Blood.
2010;
115
(1)
94-96
109
Chambers J C, Zhang W, Li Y et al..
Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin
levels.
Nat Genet.
2009;
41
(11)
1170-1172
110
Benyamin B, Ferreira M A, Willemsen G et al..
Common variants in TMPRSS6 are associated with iron status and erythrocyte volume.
Nat Genet.
2009;
41
(11)
1173-1175
111
Ganesh S K, Zakai N A, van Rooij F J et al..
Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium.
Nat Genet.
2009;
41
(11)
1191-1198
112
Finberg K E, Heeney M M, Campagna D R et al..
Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA).
Nat Genet.
2008;
40
(5)
569-571
113
Du X, She E, Gelbart T et al..
The serine protease TMPRSS6 is required to sense iron deficiency.
Science.
2008;
320
(5879)
1088-1092
114
Folgueras A R, de Lara F M, Pendás A M et al..
Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of
iron homeostasis.
Blood.
2008;
112
(6)
2539-2545
115
Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C.
The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving
membrane hemojuvelin.
Cell Metab.
2008;
8
(6)
502-511
116
Maxson J E, Chen J, Enns C A, Zhang A S.
Matriptase-2- and proprotein convertase-cleaved forms of hemojuvelin have different
roles in the down-regulation of hepcidin expression.
J Biol Chem.
2010;
285
(50)
39021-39028
117
Truksa J, Gelbart T, Peng H, Beutler E, Beutler B, Lee P.
Suppression of the hepcidin-encoding gene HAMP permits iron overload in mice lacking
both hemojuvelin and matriptase-2/TMPRSS6.
Br J Haematol.
2009;
147
(4)
571-581
118
Finberg K E, Whittlesey R L, Fleming M D, Andrews N C.
Down-regulation of BMP/SMAD signaling by TMPRSS6 is required for maintenance of systemic
iron homeostasis.
Blood.
2010;
115
(18)
3817-3826
119
Fleming R E, Ahmann J R, Migas M C et al..
Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis.
Proc Natl Acad Sci U S A.
2002;
99
(16)
10653-10658
120
Kawabata H, Fleming R E, Gui D et al..
Expression of hepcidin is down-regulated in TfR2 mutant mice manifesting a phenotype
of hereditary hemochromatosis.
Blood.
2005;
105
(1)
376-381
121
Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C.
Hepcidin is decreased in TFR2 hemochromatosis.
Blood.
2005;
105
(4)
1803-1806
122
Kawabata H, Nakamaki T, Ikonomi P, Smith R D, Germain R S, Koeffler H P.
Expression of transferrin receptor 2 in normal and neoplastic hematopoietic cells.
Blood.
2001;
98
(9)
2714-2719
123
West Jr A P, Bennett M J, Sellers V M, Andrews N C, Enns C A, Bjorkman P J.
Comparison of the interactions of transferrin receptor and transferrin receptor 2
with transferrin and the hereditary hemochromatosis protein HFE.
J Biol Chem.
2000;
275
(49)
38135-38138
124
Johnson M B, Enns C A.
Diferric transferrin regulates transferrin receptor 2 protein stability.
Blood.
2004;
104
(13)
4287-4293
125
Robb A, Wessling-Resnick M.
Regulation of transferrin receptor 2 protein levels by transferrin.
Blood.
2004;
104
(13)
4294-4299
126
Wallace D F, Summerville L, Crampton E M, Frazer D M, Anderson G J, Subramaniam V N.
Combined deletion of HFE and transferrin receptor 2 in mice leads to marked dysregulation
of hepcidin and iron overload.
Hepatology.
2009;
50
(6)
1992-2000
127
Poli M, Luscieti S, Gandini V et al..
Transferrin receptor 2 and HFE regulate furin expression via mitogen-activated protein
kinase/extracellular signal-regulated kinase (MAPK/Erk) signaling. Implications for
transferrin-dependent hepcidin regulation.
Haematologica.
2010;
95
(11)
1832-1840
127a
Corradini E, Rozier M, Meynard D et al..
Iron regulation of hepcidin despite attenuated Smad 1,5,8 signaling in mice without
transferrin receptor 2 or Hfe.
Gastroenterology.
2011;
July 8 (Epub ahead of print)
128
Ramey G, Deschemin J C, Vaulont S.
Cross-talk between the mitogen activated protein kinase and bone morphogenetic protein/hemojuvelin
pathways is required for the induction of hepcidin by holotransferrin in primary mouse
hepatocytes.
Haematologica.
2009;
94
(6)
765-772
129
Calzolari A, Raggi C, Deaglio S et al..
TfR2 localizes in lipid raft domains and is released in exosomes to activate signal
transduction along the MAPK pathway.
J Cell Sci.
2006;
119
(Pt 21)
4486-4498
130
Ramos E, Kautz L, Rodriguez R et al..
Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading
in mice.
Hepatology.
2011;
53
(4)
1333-1341
131
Roetto A, Di Cunto F, Pellegrino R M et al..
Comparison of 3 TFR2-deficient murine models suggests distinct functions for TFR2-alpha
and Tfr2-beta isoforms in different tissues.
Blood.
2010;
115
(16)
3382-3389
132
Girelli D, Trombini P, Busti F et al..
A time course of hepcidin response to iron challenge in patients with HFE and TFR2
hemochromatosis.
Haematologica.
2011;
96
(4)
500-506
133
Vielmetter J, Kayyem J F, Roman J M, Dreyer W J.
Neogenin, an avian cell surface protein expressed during terminal neuronal differentiation,
is closely related to the human tumor suppressor molecule deleted in colorectal cancer.
J Cell Biol.
1994;
127
(6 Pt 2)
2009-2020
134
Matsunaga E, Tauszig-Delamasure S, Monnier P P et al..
RGM and its receptor neogenin regulate neuronal survival.
Nat Cell Biol.
2004;
6
(8)
749-755
135
Zhang A S, West Jr A P, Wyman A E, Bjorkman P J, Enns C A.
Interaction of hemojuvelin with neogenin results in iron accumulation in human embryonic
kidney 293 cells.
J Biol Chem.
2005;
280
(40)
33885-33894
136
Kuns-Hashimoto R, Kuninger D, Nili M, Rotwein P.
Selective binding of RGMc/hemojuvelin, a key protein in systemic iron metabolism,
to BMP-2 and Neogenin.
Am J Physiol Cell Physiol.
2008;
294
(4)
C994-C1003
137
Yang F, West Jr A P, Allendorph G P, Choe S, Bjorkman P J.
Neogenin interacts with hemojuvelin through its two membrane-proximal fibronectin
type III domains.
Biochemistry.
2008;
47
(14)
4237-4245
138
Lee D H, Zhou L J, Zhou Z et al..
Neogenin inhibits HJV secretion and regulates BMP-induced hepcidin expression and
iron homeostasis.
Blood.
2010;
115
(15)
3136-3145
139
Zhang A S, Yang F, Wang J, Tsukamoto H, Enns C A.
Hemojuvelin-neogenin interaction is required for bone morphogenic protein-4-induced
hepcidin expression.
J Biol Chem.
2009;
284
(34)
22580-22589
140
Hagihara M, Endo M, Hata K et al..
Neogenin, a receptor for bone morphogenetic proteins.
J Biol Chem.
2011;
286
(7)
5157-5165
141
Zhang A S, Anderson S A, Meyers K R, Hernandez C, Eisenstein R S, Enns C A.
Evidence that inhibition of hemojuvelin shedding in response to iron is mediated through
neogenin.
J Biol Chem.
2007;
282
(17)
12547-12556
142
Kuninger D, Kuns-Hashimoto R, Nili M, Rotwein P.
Pro-protein convertases control the maturation and processing of the iron-regulatory
protein, RGMc/hemojuvelin.
BMC Biochem.
2008;
9
9
143
Silvestri L, Pagani A, Camaschella C.
Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron
homeostasis.
Blood.
2008;
111
(2)
924-931
144
Lin L, Nemeth E, Goodnough J B, Thapa D R, Gabayan V, Ganz T.
Soluble hemojuvelin is released by proprotein convertase-mediated cleavage at a conserved
polybasic RNRR site.
Blood Cells Mol Dis.
2008;
40
(1)
122-131
145
Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C.
The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving
membrane hemojuvelin.
Cell Metab.
2008;
8
(6)
502-511
146
Maxson J E, Chen J, Enns C A, Zhang A S.
Matriptase-2- and proprotein convertase-cleaved forms of hemojuvelin have different
roles in the down-regulation of hepcidin expression.
J Biol Chem.
2010;
285
(50)
39021-39028
147
Lin L, Goldberg Y P, Ganz T.
Competitive regulation of hepcidin mRNA by soluble and cell-associated hemojuvelin.
Blood.
2005;
106
(8)
2884-2889
148
Brasse-Lagnel C, Poli M, Lesueur C et al..
Immunoassay for human serum hemojuvelin.
Haematologica.
2010;
95
(12)
2031-2037
149
Luciani N, Brasse-Lagnel C, Poli M et al..
Hemojuvelin: a new link between obesity and iron homeostasis.
Obesity (Silver Spring).
2011;
(Epub ahead of print)
Herbert Y LinM.D. Ph.D.
Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts
General Hospital
185 Cambridge Street, CPZN-8216, Boston, MA 02114
Email: Lin.herbert@mgh.harvard.edu